
Homework 2 
P1.3.6 The triangular 

voltage waveform of 

Figure P1.3.6 is 

applied to a 100 Ω 

resistor. Determine: 

(a) the resistor 

current, (b) 

instantaneous power 

dissipation in the r

‘the average power in a resistor is the product of the average voltage across the 

resistor and the average current through the resistor’ valid? Justify your answer. 

 

Figure P1.3.6

1

3

5
t , min

v , V

10

10−

esistor, and (c) the average power dissipation. Is the statement 

Solution P1.3.6 
 min; 

V, n;  

v = 10t V, 0 ≤≤ t 1

v 2010 +−= t 3≤t  mi 1≤

v 3 min. 4010 −= t V, 4≤≤ t  

(a) tvi 1.0= 1≤≤ t
100

= A,  min; 

i

(b) 

0

 2.01.0 +−= t A,  min; 31 ≤≤ t

i 3 min. 4 A, 4≤≤ t  .01.0 −= t

2
2

t
R
vp ==  W,  min; 

p

10 ≤≤ t

( )
100

2010 2+−
=

t  = ( )22−t W, 31 ≤≤ t  min; 

p ( )
100

4010 2−
=

t  ( )24−= t  W, 43 ≤≤ t  min. 

(c) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−++−+== ∫∫∫∫

4

3

23

1

21

0

2

0
16844

4
11 dtttdtttdttpdt

T
P

T
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−+⎥

⎦

⎤
⎢
⎣

⎡
+−+⎥

⎦

⎤
⎢
⎣

⎡
=

4

3

2
33

1

2
31

0

3

164
3

42
334

1 ttttttt   

3
1

3
1

3
2

3
1

4
1

=
⎭
⎬
⎫

⎩
⎨
⎧ ++= W. 

1 



The following should be noted: 

1. The integral is in V×I×min. When divided by T in min, the result is in W. 

r of a cycle is the same, which means that the average is the 

: 

2. The area under each quarte

same. Hence the average can be determined from the first quarter cycle
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10 tt
=3. If t is converted to secon hen v during the first quarter cycle is v =  V, 
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(d) Vavg = 0, since the waveform is symmetri bout the horizontal axis. This makes Iavg = 0 as 

well. Thus, Vavg×Iavg = 0, whereas P ≠ 0. The average power in a resistor is not the product 

 to 

cal a

of the average voltage across the resistor and the average current through the resistor, 

because power, being the product of voltage and current, is a nonlinear quantity. The 

product of a negative voltage and a negative current is positive power, which contributes

te average power 
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P1.3.9 The voltage shown in 

Figure P1.3.9 is applied 

across a 5 Ω resistor. (a) 

Determine p,  

(b) the energy dissipated in 

the resistor at t = 3 min. 
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P1.4.12 The triangular voltage 

pulse of Figure P1.4.12 is 

applied to a  

capacitor that is initially 

uncharged. Plot as 

function of time: (a) the 

charge on the capacitor; 

(b) the energy stored in the capacitor, as derived from Equation 1.8.4, (c) the 

capacitor current; (d) the instantaneous power input to the capacitor. How is the 

energy stored in (b) related to the instantaneous power in (d)? 
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Solution P1.4.12 
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P1.5.9 A triangular current 

waveform is described by 

Figure P1.4.12, with the 

current in amperes 

replacing the voltage in 

volts. The triangular current 

pulse is applied to a  

inductor that has no initial energy storage. Plot as function of time: (a) the flux 

linkage in the inductor; (b) the energy stored in the inductor, as derived from 

Equation 1.9.10; (c) the voltage across the inductor; (d) the instantaneous power 

input to the inductor. How is the energy stored in (b) related to the instantaneous 

power in (d)? 

μH 10.
Figure P1.4.12
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Solution P1.5.9 
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Note that the numerical values in this problem are identical to those of P1.4.12, if v and i, and q 

and λ, are interchanged. 
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P2.1.4 Determine the voltage across each current 

source and the current through each voltage source 

in Figure P2.1.4. 

Figure P2.1.4
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Solution P2.1.4 

From KCL at node c: 10 = 5 + IΔ, so IΔ = 5 A. 

From KCL at node d: Iφ = 10 + 3 = 13 A. 

Ix

3 A

10 A

5 A

10 V

10 V

a

b

c d

V1

– +

V2

V3

From KCL at node a: Ix = 3 + IΔ = 8 A. 

As a check, KCL at node b: Ix + 5 = Iφ, or  

8 + 5 = 13. 

From KVL around the outer loop, starting from 

node a: -V3 + 10 = 0, or V3 = 10 V. 

From KVL around the mesh on the RHS, starting 

from node a: +10 – V1 = 0, or V1 = 10 V. 

From KVL around the mesh cdb, starting from 

node c: V2 – 10 – V3 = 0. This gives: V2 = 20 V. 

As a check, KVL around the mesh adc, staring frpm node a: V1 – V2 + 10 = 0, or 10 – 20 + 10 = 

0. 
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P2.2.5 Determine  between terminals ab in Figure P2.2.5. eqG
a

b
GG

G
2
3G

2
3

G
2
3

2
G

Figure P2.2.5

 

Solution P2.2.5 

G in series with 
2
3 G is 

5.2
5.11×
=0.6 G.  

The two 0.6 G resistors ae in parallel, giving a total conductance of 

1.2 G. This conductance is in series with 1.5 G, which gives 

GG
3
2

2.15.1
2.15.1

=
+
× ; hence, Gab = GGG

6
7

3
2

2
=+ . 
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P2.2.6 Determine Req 

between terminals ab 

in Figure P2.2.6. 

b 0.1 kΩ

0.5 kΩ2 kΩ
2 kΩ

a0.2 kΩ

1.2 kΩ 0.6 kΩ
0.3 kΩ

c

 

 

Solution P2.2.6 

Starting with the RHS, (2 kΩ)||(0.5 kΩ) = 4.0
5.2

5.02
=

× kΩ, 0.1 + 0.4 = 0.5 kΩ,  

Rbc = (2 kΩ)||(0.5 kΩ) = 0.4 kΩ; 

on the LHS, (1.2 kΩ)||(0.6 kΩ) = 4.0
8.1

6.02.1
=

× kΩ, 0.2 + 0.4 = 0.6 kΩ, 

Rac = (0.3 kΩ)||(0.6 kΩ) = =
×
9.0

6.03.0  2 kΩ;  .0

Rab = 0.4 + 0.2 = 0.6 kΩ. 
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